

Toward a Uniform Moraic Quantity Principle

Jonathan Charles Paramore | Department of Linguistics | jcparamo@ucsc.edu

Main Claims

1. The lack of weight uniformity for weight-sensitive processes within and across languages is actually consistent with a theory that treats codas as universally moraic.

2. Cross-linguistic variations in weight criteria are best captured with a syllable weight metric that incorporates sonority into its computations.

1. Background

The standard "variable weight" approach to moraic structure contends that the moraicity of codas is a language-specific parameter[1], [2], [3].

Examples

- (2) Yana_{[4], [5]} requires codas to contribute a mora to the syllable.
- Primary stress criterion: {CVx, CVC} > CV
- o Rule: Stress initial syllable or leftmost heavy if present.
- (a) 'me.c'i "coyote" (b) ni. 'saa.tin.za "it said I went away" '1.ri.k'i "ear ornaments" ha.c'a. '3id.p'aa "Angelica Tomentosa"
- (3) **Tibetan**_{[6], [7]} bans codas from contributing a mora to the syllable.
 - Primary stress criterion: CVx > {CVC, CV}
 - o Rule: Stress initial syllable or leftmost heavy if present.
- (a) 'lap.ta "school" (b) am.'to: "person from Amdo" 'wo.ma "milk" 'ty:.tu: "shirt"
- (4) **Kwakw'ala**_{[8], [9]} requires sonorant codas (R) to contribute a mora to the syllable, but not obstruent codas (O).
 - Primary stress criterion: {CVx, CVR} > {CVO, CV}
 - Rule: Stress final syllable or leftmost heavy if present.
- (a) nə.ˈ**pa** "throw a round thing" (b) ˈ**mən**.sa "to measure" max^w.ˈ**c'a** "to be ashamed" t'ə.ˈ**li**ː.d²u "fish-cutting board"

2. Issues with the "Variable Weight" Analysis

Problem: Weight-sensitive processes within a single language often diverge in how they treat codas in terms of weight_[7].

<u>Tibetan</u>

- (5) Tonal criterion: {CVx, CVR} > {CVO, CV}
 - kham³¹ "Kham" lɔr³¹ "electricity" *tɔk³¹.pa *∫o³¹.pa
- (6) Compensatory Lengthening: all codas are moraic:

kə**p**.ki → k**ə**ː.ki "will do, make" t∫u**r**.ku → t∫**u**ː.ku "nineteen"

Aguacatec_[10]

(7) Word Minimality: CVC light for primary stress but heavy for minimality

šaq 'clay' mem 'deaf person'

Chickasaw_{[11], [12]}

(8) Primary stress on final σ or heavy if present - $CV_x > \{CVC, CV\}$ Secondary stress on all remaining $CVX - \{CV_x, CVC\} > CV$

no.ˌtak.ˈfa "jaw" ta.ˈlax.ˌnom.ˌpa? "telephone" ˌok.ˌfok.ˈkol "type of snail" ˌʃim.ma.ˈnox.ˌli? "Seminole" ˌhat.ta.ˈkat "man" ˌin.ˌtik.ˈbaxt "sibling"

Conclusion: If codas vary in their moraicity, as the "variable weight" approach suggests, we cannot account for these weight mismatches.

3. Solution – The UMQ Principle

(9) Uniform Moraic Quantity Principle
Nucleus and coda segments always project a mora.

4. Accounting for CVC's Variability

How do we account for variations in syllable weight criteria?

The Moraic Sonority Metric

- Syllable weight is process specific_[7].
- Syllable weight is based on the number of moras of a specified sonority.
- Weight criteria coincide with a bifurcation point on the sonority hierarchy.
- Sonority levels above the bifurcation are used in weight computations.
- Sonority levels below the bifurcation are excluded from computations.

The Moraic Sonority Metric and Weight-sensitive Stress

- Every moraic sonority level is used in some languages.
 - Yana {CVx, CVC} > CV
- Only a subset of moraic sonority levels are used in other languages.
- Kwakw'ala {CVx, CVR} > {CVO, CV}
- Tibetan CV: > {CVC, CV}
- Multiple bifurcations between sonority levels are used for languages with complex stress criteria.
- Mankiyali_[13] CV_x > CVC > CV

5. Formalization – Nonfinality Framework

- Non-fin (GCat, Cat, PCat)[14]
 - Entries on a specified level of the metrical grid (GCat): e.g., x_ω or x_F
- o Must avoid *the final instance of a particular element* (Cat): e.g., μ or σ
- Within a given domain (PCat): e.g., σ or ω

Figure 2: Metrical Grid
Formulations for each
syllable type when stressed

• Non-Fin $(x_{\omega}, \mu_{R}, \sigma)$ "*FinSon" – Bifurcation between μ_{O} and μ_{R} AOV if a ω -level gridmark occurs over the final sonorant mora of a σ .

• Non-fin $(\mathbf{x}_{\omega}, \mu_{V}, \sigma)$ "*FinV" – Bifurcation between μ_{R} and μ_{V} AOV if a ω -level gridmark occurs over the final vocalic mora of a σ .

Primary stress in Kwakw'ala {CVz, CVR} > {CVO, CV}

/max ^w c'a/	*FINSON	Xω-R	*FINµ
\rightarrow (w) max ^w _{μ} . 'c'a	*		*
(a) 'max ^w _μ . c'a	*	*W	L

/mənsa/	*FINSON	xω-R	*FINµ
\rightarrow (w) 'mən _{μ} .sa		*	
(a) mən _μ . ˈsa	*W	L	*W

6. Discussion & Future Research

<u>Discussion</u>

Advantages of the UMQ.

Satisfies constraint

- Simplifies our theory of moraic structure.
- Obviates the need for Coercion_{[15], [16]}.
- More accurately predicts the cross-linguistic moraic status of codas.

Future Research

- Are there gaps in the factorial typology of the proposed Nonfinality constraints?
- Formalization of moraic sonority for other weight-sensitive phenomena.
- What about moraic onsets?
- Can these moraic sonority constraints be phonetically grounded?

Acknowledgeme

Many thanks to Rachel Walker, Ryan Bennett, Brett Hyde, and the linguistics community at UCSC for their comments and suggestions.